Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 16, 2025
- 
            Graphene-based nanostructures hold immense potential as strong and lightweight materials, however, their mechanical properties such as modulus and strength are difficult to fully exploit due to challenges in atomic-scale engineering. This study presents a database of over 2,000 pristine and defective nanoscale CNT bundles and other graphitic assemblies, inspired by microscopy, with associated stress–strain curves from reactive molecular dynamics (MD) simulations using the reactive INTERFACE force field (IFF-R). These 3D structures, containing up to 80,000 atoms, enable detailed analyses of structure-stiffness-failure relationships. By leveraging the database and physics- and chemistry-informed machine learning (ML), accurate predictions of elastic moduli and tensile strength are demonstrated at speeds 1,000 to 10,000 times faster than efficient MD simulations. Hierarchical Graph Neural Networks with Spatial Information (HS-GNNs) are introduced, which integrate chemistry knowledge. HS-GNNs as well as extreme gradient boosted trees (XGBoost) achieve forecasts of mechanical properties of arbitrary carbon nanostructures with only 3 to 6% mean relative error. The reliability equals experimental accuracy and is up to 20 times higher than other ML methods. Predictions maintain 8 to 18% accuracy for large CNT bundles, CNT junctions, and carbon fiber cross-sections outside the training distribution. The physics- and chemistry-informed HS-GNN works remarkably well for data outside the training range while XGBoost works well with limited training data inside the training range. The carbon nanostructure database is designed for integration with multimodal experimental and simulation data, scalable beyond 100 nm size, and extendable to chemically similar compounds and broader property ranges. The ML approaches have potential for applications in structural materials, nanoelectronics, and carbon-based catalysts.more » « less
- 
            Abstract High entropy alloys (HEAs) are an important material class in the development of next-generation structural materials, but the astronomically large composition space cannot be efficiently explored by experiments or first-principles calculations. Machine learning (ML) methods might address this challenge, but ML of HEAs has been hindered by the scarcity of HEA property data. In this work, the EMTO-CPA method was used to generate a large HEA dataset (spanning a composition space of 14 elements) containing 7086 cubic HEA structures with structural properties, 1911 of which have the complete elastic tensor calculated. The elastic property dataset was used to train a ML model with the Deep Sets architecture. The Deep Sets model has better predictive performance and generalizability compared to other ML models. Association rule mining was applied to the model predictions to describe the compositional dependence of HEA elastic properties and to demonstrate the potential for data-driven alloy design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available